
Integration

OverheadCAM is designed from beginning to end to be a well-behaved component of a 
larger system. The advantages in the paragraphs below can be roughly categorized as: 
ease of integration, ease of use, and availability of source code.

First, OverheadCAM is strictly a background component. It has no Graphical User 
Interface because it relies on the containing system to provide input and accept its output. 
For the user, this means that there is no need to learn new screen formats or data 
definitions. For the containing system, there is no need to sell clients on accepting 
another system developed by another vendor. The improvements will be part of the 
containing system in every sense.

Second, the function is very well understood and has clear boundaries. Every serious cost 
accounting text describes allocation. Having clear boundaries leads to good partitioning 
of functions into components. That leads to reduced testing cost and maintenance cost. 
When functions are mixed unnecessarily, the number of combinations and processing 
paths is increased without a corresponding benefit. When OverheadCAM has its data, it 
does not get any more data from other parts of the containing system. This simplifies 
testing. It also makes it simple to put allocations on another processor to run in parallel.

Allocations can be considered as much like a sort. For a sort, the function is well 
understood, the boundaries are clear, and no one would write their own. Specialized 
software with proprietary algorithms has better function, is cheaper, and is available now. 
These attributes describe OverheadCAM, too.

Third, the interface with the containing system is simple, efficient, and easily understood. 
The interface is just sequential flat files. As input, OverheadCAM expects a file of rules 
and a file of amounts to be allocated. It’s output is a sequential file of allocated amounts. 
(Sizes and locations of fields are specified with configuration data.) This is an entirely 
appropriate interface for a batch process: a) It is much more efficient than other ways of 
transferring data. b) It is safe: neither OverheadCAM nor the containing system can touch 
the internal data or tables of the other. c) The approach is easy to understand: there is 
nothing fancy for programmers to learn. 

Fourth, OverheadCAM can be used as a component for a variety of purposes. It can be 
used for GL financial close cost allocations. It can be used for more accurate calculation 
of activity pools for ABC/M. It can be used for budgeting with all-in costs. It can be used 
for BI and BPM profitability studies where use of all-in costs is important. Profitability 
studies based on incomplete costs can be expected to be misleading. OverheadCAM’s 
outstanding speed and scalability make it practical to do allocations in all these contexts. 
Finally, OverheadCAM can allocate anything at all. For example, risk or investment 
income could be allocated according to rules.

Fifth, OHC is portable. It has been tested on Windows 98, Windows 2000 Professional, 



Windows XP, Windows 2003 Server 64 bit, HP-UX on Itanium and PA-Risc, and Linux. 
In every case, it compiled and ran correctly the first try. This is due to using Standard C 
and to avoiding the use of tricky coding or proprietary APIs. All use of OS functions, 
such as I/O and memory management, is through Standard C constructs. These 
approaches make it easy to move from platform to platform. Using only Standard C 
constructs also provides immunity from changes in OS versions. Not using an RDB or 
providing a GUI contributes to portability. Since OverheadCAM is so fast and does not 
even use an RDB, there is no need for stored procedures. Stored procedures are a 
maintenance problem, especially when multiple platforms are supported

Sixth, Necessary maintenance is minimal. The code does not have many execution paths 
because the algorithm is straightforward and because user input is not used during the 
batch process. This helps with testing, programmer training, and making changes. 
Everything that makes OverheadCAM portable contributes to low maintenance cost and 
effort. 

Source code and a test file generator are provided. If a licensee wishes to make changes, 
the changes can be made within the component, rather than being attached someway

Seventh, OverheadCAM can be readily packaged in different ways. This is because it is 
implemented in layers, separating the core algorithm from the specifics of how data is 
acquired. It can be more tightly coupled, if that is desirable. It can be packaged as Service 
Oriented Architecture. It can be used to allocate transactions in “real time”, as 
transactions are received at a server. It can be packaged to do remote allocations, either in 
batch or transaction by transaction.

Eighth, on the business side of what makes a good component, use of OverheadCAM 
would enable the using system to have the best allocations in the industry. Since the 
algorithm is patented, copycat competitors would not be able to copy the function without 
paying anything. The owner of patent rights could license the technology or deny its use 
to others.


